
1

Downcasing Types

(Abstract sent to UNILOG’2010)
Eduardo Ochs - LLaRC, PURO/UFF, Brazil
eduardoochs@gmail.com

For more details see:
http://angg.twu.net/LATEX/2009unilog-dnc.pdf

When we represent a category C in Type Theory it becomes a 7-uple:
(C0, HomC, idC, ◦C; assocC, idLC, idRC), where the first four components are
“structure” and the last three are “properties”.

We call the “structure” components the “syntactical part”, and the “prop-
erties” components the “logical part”. A protocategory is a 4-uple (C0, HomC,

idC, ◦C) — just the “syntactical skeleton” of what a category is, without the
components that talk about equality of morphisms. By splitting at the right
places the uples that represent functors, natural transformations, isos, adjunc-
tions, limits, etc, we define proto-functors, proto-NTs, and so on.

The operation that takes entities and returns the corresponding proto-entities
behaves as a projection, and we say that it goes from the “real world” — where
everything has both a “syntactical” and a “logical” part — to the “syntactical
world”, where only the syntactical parts have been kept.

The opposite of to project is to lift. We may start with a proto-something,
s−, in the syntactical world, and try to lift it to an s in the real world that
projects into s−. Meta-theorems about lifting are hard to obtain, but we know
many interesting liftings — each object r of the (projectable fragment of the)
real world projects to an proto-object r− that can be lifted back to r — and we
can start by studying them to understand how liftings behave.

Proto-objects — even proto-proofs — are especially amenable to being rep-
resented diagrammatically, and there is a simple way to attribute a precise
meaning to each entity — each node, arrow, etc — appearing in these dia-
grams. We will show how to formalize two such diagrammatic proofs — the
Yoneda Lemma and one of the weakest monadicity theorems — as terms in
Coq.

For most applications in Categorical Semantics one further trick is needed:
“downcasing types”, that lets us name entities by what they represent in the
“archetypical case”. For example, in a hyperdoctrine, if P is an object over
B × C and f : A → B then Beck-Chevalley Condition for ‘∀’ says that the
natural morphism from f∗ΠπBC

P to ΠπAC
(f × C)∗P should be an iso. In the

archetypical hyperdoctrine, Sub(Set), P “is” a subset { (b, c) ∈ B×C | P (b, c) }
of B × C, and both f∗ΠπBC

P and ΠπAC
(f × C)∗P “deserve the name” { a ∈

A | ∀c ∈ C. P (fa, c) }. The downcasing of P is b, c||P , and the BCC map
becomes a map a||∀c.P 7→ a||∀c.P that is not the identity, whose construction
can be read out from a diagram.

Roughly, what is the happening is the following: the formal definition of
hyperdoctrine generalizes some of the structure of Sub(Set); with our way of
interpreting diagrams we can define all this structure diagrammatically, in a

2009unilog-abs1 November 16, 2009 17:28

http://angg.twu.net/LATEX/2009unilog-dnc.pdf


2

notation that “suggests” that we are in Sub(Set), i.e., “in the archetypical
case”, and then we can “lift” these definitions to diagrams with the same two-
dimensional structure, but in any of the standard notations.

Several categorical theorems become quite clear when we find “archetypi-
cal diagrams” for their (proto-)proofs, and then we lift those to standard nota-
tions; we will show some examples from Lawvere’s “Adjointness in Foundations”
(1969) and “Equality in Hyperdoctrines” (1970) papers.

2009unilog-abs1 November 16, 2009 17:28


